学好网
搜索

《三角形三边的关系》教学设计优秀7篇

学大教育
来源:学大教育

2023-06-07 23:02:41 | 阅读:

进入 >

作为一位杰出的教职工,往往需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?这次白话文为您整理了《三角形三边的关系》教学设计优秀7篇,希望可以启发、帮助到大家。


角形边的关系教案 篇一

教学目标:

1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。

2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。

3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。

教学:理解、掌握“三角形任意两边之和大于第三边”的性质。

教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。

教学过程:

一、创设情境

a怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。

2、动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。

师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。(1)4c5c9c(2)3c6c10c(3)6c7c8c

学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边(1)不能4+5=94+9>55+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形(2)不能6+10>33+10>63+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形(3)能6+7>86+8>77+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。

三、拓展应用:

1、说一说老师为什么走中间的这条路最近?

2、判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)

(1)3,6,9(2)4,4,10

(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)

3、解决问题:

师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。

(1)第三根木条可以是多少分米?(取整数)

(2)第三边的木条的长度是a分米,那么a的取值范围是()<a<()

四、回顾反思:

同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?


初一数学教案 篇二

教学目的

1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

、难点

:工程中的工作量、工作的效率和工作时间的关系。

难点:把全部工作量看作“1”。

教学过程

一、复习提问

1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全

部工作量的多少?

2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成

全部工作量的多少?

3.工作量、工作效率、工作时间之间有怎样的关系?

二、新授

阅读教科书第18页中的问题6。

分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

2.怎样用列方程解决这个问题?本题中的等量关系是什么?

[等量关系是:师傅做的[www.baihuawen.cn]工作量+徒弟做的工作量=1)

[先要求出师傅与徒弟各完成的工作量是多少?]

两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。解方程得x=2

师傅完成的工作量为=,徒弟完成的工作量为=

所以他们两人完成的工作量相同,因此每人各得225元。

三、巩固练习

一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现

由甲独做10小时;

请你提出问题,并加以解答。

例如(1)剩下的乙独做要几小时完成?

(2)剩下的由甲、乙合作,还需多少小时完成?

(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

四、小结

1.本节课主要分析了工作问题中工作量、工作效率和工作时间之

间的关系,即工作量=工作效率×工作时间

工作效率=工作时间=

2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

五、作业

教科书习题6.3.3第1、2题。


《三角形三边的关系》教案教学设计 篇三

课件简介:

第二课时

三角形的三边关系

教学目标

1、经历动手操作、探索发现、猜想验证,发现揭示并初步应用三角形三边关系即“三角形的任何两边之和大于第三边”的活动过程,发展空间观念,培养初步的逻辑思维能力、动手操作能力,体验“做数学”“用数学”的乐趣。

2、经历探索、发现、应用三角形的三边关系的过程,增强勇于探索的精神,体会数学的实用价值,感受数学的严谨和探究数学成功的喜悦,增强数学应用意识和交流合作精神,提高学生的数学素养。

创设情境,激发兴趣

姚明是同学们熟悉而喜爱的篮球明星,他高大而帅气,有人说:“姚明特厉害,他一步就能迈3米”,对于这个说法,你信不信呢?

(背景资料:姚明身高2.26米,体重140.6kg,腿长约1.30米)

实验探究

1、分组实验:

每组准备四根木条或硬纸条,分别长为4cm、6cm、7cm、11cm尝试实验从其中任取三根首尾顺次相接来摆三角形,试试是否成功?做好实验记录。

2、交流发现:

问题1:是不是任意三条线段都能组成三角形呢?说说哪次试验是失败的,为什么?

问题2:从实验中你能发现什么呢?


初中三角形三边关系教学设计 篇四

一、教学目标

1、 掌握梯形、等腰梯形、直角梯形的有关概念。

2、 掌握等腰梯形的两个性质:等腰梯形同一底上的两个角相等;两条对角线相等。

3、 能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力。

4、 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

二、教法设计

小组讨论,引导发现、练习巩固

三、、难点

1、教学:等腰梯形性质。

2、教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线)。

四、课时安排

1课时

五、教具学具准备

多媒体,小黑板,常用画图工具

六、师生互动活动设计

教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的性质,归纳小结梯形转化的常见的辅助线

七、教学步骤

【复习提问】

1、什么样的四边形是平行四边形?平行四边形有什么性质?

2、小学学过的梯形是什么样的四边形。

(让学生动手画一个梯形,并找3名同学到黑板上来画,并指出上、下底和腰,然后由学生总结出梯形的概念)。

【引入新课】(板书课题)

梯形同样是一个特殊的四边形,与平行四边形一样,它也有它的特殊性,今天我们就来研究这个问题。

1、梯形及梯形的有关概念

(l)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。

(2)底:平行的一组对边叫做梯形的底(通常把较短的底叫上底,较长的底叫下底)。

(3)腰:不平行的一组对边叫做梯形的腰。

(4)高:两底间的距离叫做梯形高。

(5)直角梯形:一腰垂直于底的梯形。

(6)等腰梯形:两腰相等的梯形。

(以上这一过程借助多媒体或投影仪演示)

提醒学在注意:

①梯形与平行四边形同属于特殊的四边形,因为它们具有不同的特殊条件,所以必然有不同的性质。

②平行四边形的对边平行且相等,而梯形中,平行的一组对边不能相等(让学生想一想,为什么不能相等)。

③上、下底的概念是由底的长短来定义的,而并不是指位置来说的。

2、等腰梯形的性质

例1 如图,在梯形 中, , ,求证: 。

分析:我们学过“等腰三角形两底角相等”,如果能将等腰梯形在同一底上的两个角转化为等腰三角形的两个底角,问题就容易解决了。

证明:(略)

由此得出等旧梯形的性质定理:等腰梯形在同一高上的两个角相等。

例2 如图,求证:等腰梯形的两条对角线相等。

已知:在梯形 中, , ,求证: 。

分析:要证 ,只要用等腰梯形的性质定理得出 ,然后再利用 ,即可得出 。

证明过程:(略)。

由此得到多腰梯形的首要条性质:等腰梯形的两条对角线相等。除此之外,等腰梯形还是轴对称图形,对称轴是过两底中点的'直线。

3、解决梯形问题常用的方法

在证明梯形性质定理时,我们采取的方法是过点 作 交 于 ,从而把梯形问题转化成三角形来解,实质上是相当于把采取 平行移动到 的位置,这种方法叫做平行移动(也可移对角线),这是解决梯形问题常用的方法之—(让学生想一想,还可以用什么样的方法作辅助线来解决梯形问题,多找几名学生回答,然后教师总结,可借助多媒体演示见图)。

(1)“作高”:使两腰在两个直角三角形中。

(2)“移对角线”:使两条对角线在同一个三角形中。

(3)“延腰”:构造具有公共角的两个等腰三角形。

(4)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。

综上所述:解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决。

【总结、扩展】

小结:(以提问的方式总结)

(1)梯形的有关概念。

(2)梯形性质(①-③)。

(3)解决梯形问题的基本思想和方法。

(4)解决梯形问题时,常用的几种辅助线。


《三角形三边的关系》教案教学设计 篇五

教学内容

人教版义务教育课程实验教科书数学四年级下册P82页。

教学目标

1、让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。

2、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

3、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

教具、学具准备

多媒体课件,不同长度不同颜色的小棒若干根,实验表格 。

教学过程

一、创设情境,导入新课

师:出示课件)同学们看,图上这些地方你们都熟悉吗?

(我们的学校、鼓楼商场还有学校后门的建设银行。)

师:如果把我们学校大门到建行看成一条直路的话,把这三个地方连接起来,就成什么图形?

师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?

师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?

师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?

师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。

师:大多数的同学都是从生活经验中发现走两条边的线路比走另一条边的线路远。那么,有没有别的办法证明我们的这种判断是正确的呢?

(学生困惑,沉默不语。)

师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?

(板书课题:三角形的三边关系)

二、设疑激趣,动手探究

师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)

师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。

师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?

(学生上台演示,其他同学看。)

师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?

师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。

同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。

(单位:厘米)

能围成三角形的三根小棒(红、蓝、黄)的长度分别是:


《三角形三边的关系》教案教学设计 篇六

教学目标:

1、通过量一量、摆一摆、算一算等实验活动,探索并发现三角形任意两边之和大于第三边,并应用这关系解释一些生活现象,解决一些简单的生活问题。

2、在实验过程中培养学生的猜想意识、自主探索、合作交流的能力。

教学、难点:探索并发现三角形任意两边之和大于第三边。

教学准备:学生、老师各准备几根长短不等的小棒、直尺、探究报告单。

教学过程:

一、复习旧知,导入新课

这是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。

二、动手操作,发现问题

师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?

生:三角形。

师:谁愿意上来围一围?围的时候要注意小棒首尾相连。

师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)。

三、猜想验证,发现规律

师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?

生:换一根小棒

师:怎样换?同学们说的都是你们的猜想(演示猜想1)

1、学法指导

师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)。

操作要求:

(1)、2人一组合作完成四种拼法

(2)、围三角形时要注意首尾相连。

(3)、完成后,填写好活动记录表准备交流

首要根小棒长

第二根小棒长

第三根小棒长

能否围成三角形

2、 动手操作,寻找规律(师巡视,并指导)

3、 交流汇报,探究规律。

师:哪个小组愿意来汇报。

小组上台展示,

3厘米、8厘米、10厘米 能

3厘米、5厘米、10厘米 不能

3厘米、5厘米、8厘米 不能

5厘米、8厘米、10厘米 能

师:其它组有不同意见吗?

师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?

三根小棒要围成三角形,必须满足什么条件?

通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?

先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?

生:

师:其他同学赞同吗?谁再来说一说。

师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈8)你很会观察。(演示)

师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?

生:3+5=8 重合了 不能

师:是这样吗?(演示)请看大屏幕。

师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。

师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。

师:那么怎样才能围成三角形呢?

生:两条边加起来要大于第三边就行了。

师(板书):两边之和大于第三边

师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10

看起来是这样的。

3、师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?

生:有一种不符合就不行了

师:看来只是其中的两条边之和大于第3条边是不完整的,

生1:加“任何”、“任意”

生2:其他两边之和都大于第三条边。

生3:无论哪两条边之和都要大于第三边。

4、归纳小结

师:看来只是其中的两条边之和大于第3条边是不完整的,

师:这句话概括说就是:任意两边之和大于第三边(板书:任意)

师:是这样吗?再挑选一组能围成三角形的三条边,来验证:

生:3+4>5、3+5>4、4+5>3,

师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)

四、课堂小结

老师在生活中还看到了这么一种现象:(演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?

师:今天你有什么收获?

其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。


角形边的关系教案 篇七

【教学目标】

1、使学生理解三角形的定义,掌握三角形的特征和特性。

2、知道三角形高和底的含义,会在三角形内画高。

3、通过观察和操作,培养学生比较、概括、判断、推理的能力并发展学生空间观念,实现知识和技能的正迁移,让学生做到活学活用。

【教学】

使学生掌握。

【教学难点】

学会给三角形画高。

【教具】

三角板一套、多媒体课件

【教学过程】

一、课前预习

1、三角形的含义是什么?

2、三角形的特征和特性是什么?

3、怎样画三角形的高?

二、展示交流

1、动手操作:用四边形、三角形撑起两个支架,然后对比、观察,发现了什么结论?

2、课件出示电线杆、自行车图片,体会三角形的稳定性。

3、列举生活中应用三角形稳定性的例子。

4、提示课题:三角形的认识

三、探究活动,掌握特征

1、理解三角形的含义

①通过实物演示和出示课件,总结:什么叫三角形?

②学生自己画一个三角形。

2、探究三角形的特征

(1)课件演示,说出三角形各部分名称。(边、顶点和角)

(2)课件出示三个三角形,观察这三个三角形,你还性理了什么?

(3)动手画一个三角形,标出顶点、边和角。

(4)用字母ABC表示三角形。

3、认识三角形的底和高

(1)课件出示三角形屋顶的房子和斜拉桥,你能想出办法测量三角形的房顶和斜拉桥的高度吗?

(2)课件演示,抽象出三角形,学生作反馈测量方法,引出三角形高和底的含义。

(3)出示有一组底和高的三角形,观察、讨论,还有其它的底和高吗?

(4)完成教材第86页练习十四第1题

四、检测反馈

1、填空

①三角形是由()条边同()个顶点,()个角组成的。

②三角形具有()性。

③三角形有()条高,有()个底。

2、判断

(1)由三条线段组成的图形是三解形。()

(2)三角形有三条高,三个底。()

(3)自行车车架运用了三角形的稳定性原理。()

3、画出这个三角形的三条高。

四、板书设计

三角形的认

稳定性由三条线段围成的图形叫做三角形

教后反思:本节课的概念比较多.学生在学习这本课的时候,对于画高,有个别同学画得不对,可见是以前学习画垂线的时候,掌握得不太好.在今后,应该多加练习.

编辑:yongbin
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >