2020-12-17 14:05:00 | 阅读:
数学是一门很重要的学科,下面是八年级数学知识点的总结,希望能在数学的学习上给大家带来帮助。
1.经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。
2.三角形全等的判定
(1)SSS(边边边)
三边对应相等的三角形是全等三角形。
(2)SAS(边角边)
两边及其夹角对应相等的三角形是全等三角形。
(3)ASA(角边角)
两角及其夹边对应相等的三角形全等。
(4)AAS(角角边)
两角及其一角的对边对应相等的三角形全等。
(5)RHS(直角、斜边、边)
在一对直角三角形中,斜边及另一条直角边相等。
3.角平分线
(1)从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。
(2)性质
①角平分线分得的两个角相等,都等于该角的一半。
②角平分线上的点到角的两边的距离相等。
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
学大教育
学大教育
学大教育
学大教育