学好网
搜索

初二勾股定理证明方法三种

学大教育
来源:学大教育

2020-12-17 14:07:00 | 阅读:

进入 >

这篇文章给大家分享三种初二勾股定理的证明方法,分别是简洁证明法、欧几里得证法、项明达证法。接下来分享具体内容,供参考。

初二勾股定理证明方法三种

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。

画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。

因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。

因此四边形BDLK=BAGF=AB²。

同理可证,四边形CKLE=ACIH=AC²。

把这两个结果相加,AB²+AC²=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB²+AC²=BC²,即a²+b²=c²。

项明达证明勾股定理的方法

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵∠BCA=90°,QP∥BC

∴∠MPC=90°

∵BM⊥PQ

∴∠BMP=90°

∴BCPM是一个矩形,即∠MBC=90°

∵∠QBM+∠MBA=∠QBA

∠ABC+∠MBA=∠MBC=90°

∴∠QBM=∠ABC

又∵∠BMP=90°,∠BCA=90°,BQ=BA=c

∴RtΔBMQ≌RtΔBCA

同理可证RtΔQNF≌RtΔAEF

即a2

编辑: 布尔
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >