学好网
搜索

中考数学总结归纳整理

学大教育
来源:学大教育

2020-12-22 11:53:00 | 阅读:

进入 >

这篇文章小编给大家总结归纳了中考数学的重要,接下来分享具体内容,供参考。

中考数学总结归纳整理

一元一次方程

(1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一个未知数、未知数的比较高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(3)等式的性质

①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

(3)解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号。

③移项:把等式一边的某项变号后移到另一边。

④合并同类项。

⑤系数化为1。

一元二次方程

(1)一元二次方程的求根公式

把方程化成一般形式aX²+bX+c=0,

求出判别式△=b²-4ac的值

当Δ=>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;

当Δ=0时,方程有两个相等的实数根;

当Δ<0时,方程无实数根,但有2个共轭复根。

(2)一元二次方程求根公式的推导过程

①ax2+bx+c=0(a≠0,),等式两边都除以a,得x2+bx/a+c/a=0,

②移项得x2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b2/4a2。

③配方得x2+bx/a+b2/4a2=b2/4a2-c/a,即(x+b/2a)2=(b2-4ac)/4a,

④开根后得x+b/2a=±[√(b2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b2-4ac)]/2a。

(3)一元二次方程的配方法步骤

①把原方程化为一般形式;

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;

③方程两边同时加上一次项系数一半的平方;

④把左边配成一个完全平方式,右边化为一个常数;

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

二次函数

(1)二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数比较高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

编辑: 小天
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >