2020-12-21 18:00:00 | 阅读:
倍角公式,是三角函数中非常实用的一类公式。二倍角公式通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。
三角函数的二倍角公式
Sin2A=2SinA*CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
三角函数的三倍角公式
sin3A=4sinA*sin(π/3+A)sin(π/3-A)
cos3A=4cosA*cos(π/3+A)cos(π/3-A)
tan3A=tanA*tan(π/3+A)*tan(π/3-A)
三角函数的四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
通用公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
学大教育
学大教育
学大教育
学大教育