学好网
搜索

三角函数化简公式推导

学大教育
来源:学大教育

2020-12-21 18:10:00 | 阅读:

进入 >

三角函数化简公式是对复杂的三角函数进行简化,使三角函数变为简单的。下面小编整理了三角函数化简公式推导,供大家参考。

三角函数化简公式推导

三角函数化简公式

三角函数和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数积化和差公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

倍角公式

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三角函数通用公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

三角函数化简技巧

1、统一名:其中包含齐次化切,以及切化弦。

2、统一角:单角转倍角,倍角转单角。

3、降幂:但不能违背统一角的原则。

4、遇到特殊角拆。

5、边转角,角转变。

6、归一原则。

7、配角原则。

三角函数化简公式的推导

设tan(A/2)=t

sinA=2t/(1+t^2)

tanA=2t/(1-t^2)

cosA=(1-t^2)/(1+t^2)

推导首先:(其它类似)

sinA=2sin(A/2)cos(A/2)

=[2sin(A/2)cos(A/2)]/[sin^2(A/2)+cos^2(A/2)]

分子分母同时除以cos^2(A/2)

=[2sin(A/2)cos(A/2)/cos^2(A/2)]/[(sin^2(A/2)+cos^2(A/2))/cos^2(A/2)]

化简:

=[2sin(A/2)/cos(A/2)]/[sin^2(A/2)/cos^2(A/2)+1]

即:

=(2tan(A/2))/(tan^(A/2)+1)

编辑: 老邓
温馨提示:免费领取0元试听课!满意在报名!
中小学辅导
查看更多 >
猜你喜欢
查看更多 >