2023-10-26 22:16:21 | 阅读:
如果数列{an}n项an与n之间的关系可以用一个公式来表示,称为数列的通项公式。一些数列的通项可以用两个或两个以上的公式来表示。没有通项公式的数列也存在,如由所有质数组成的数列。
按一定顺序排列的一列数称为数列,并将数列排列{an} 第n项以特定的公式(包括参数n)表示,称为该列的通项公式。这就像函数的分析一样,可以通过一次性替换特定的n值来了解相应的an 项的值。而数列通项公式的求法,通常是由其递推公式经过几次变换后得到的。
若等比数列{an}首要项为a1,公比为q,数列an的通项公式为an=a1q^n-1.
注意:1)因为an=a1q^n-1,所以当q>0且q≠1.等比数列的图像是同一指数函数上的一些分散点,横坐标是自然数。
2)等比数列{an}an的通项公式也可以由an=amq^n-确定m公式。
例:已知等比数列{an}中间,a1=1,a2=2,写出其通项公式。
解:显然,其通项公式是an=2^n-1.
若等差数列{an},公差为d,an=a1+(n-1)d,这是等差数列{an}通项公式。
注:1)因为an=nd+(a1-d),因此,等差数列的图像是同一直线上的一些分散点,横坐标是自然数列,公差D的几何意义是直线的斜率。
2)等差数列{an}通项公式也可以由以下公式确定:①an=am+(n-m)d,②am+n=(mam-nan)/(m-n)
3)等差数列{an}公差d可以是公式d=(an-am)/(n-m)确定。
学大教育
学大教育
学大教育
学大教育