2023-10-26 22:17:42 | 阅读:
三角函数是高中数学学习的。那么,数学三角函数有哪些完全适用的公式呢?以下小系列整理了一些相关信息供大家参考!
一、(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明以下两种类型,将一种类型从左到右删除(sinα)^2,第二个除(cosα)^2即可
(4)总有任何非直角三角形
tanA+tanB+tanC=tanAtanBtanC
二、设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
也就是说,sina.tanA.可以使用tannncosa(A/2)表示,当需要一串函数类型的最大值时,可以使用全适用公式将其推导成只含有一个变量的函数,最大值很容易找到。
三、sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}
将sinα、cosα、tanα用tan代替(α/2)公式,这种替换称为全适用替换.
1.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
2.和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
三、两角及公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
4.积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2
学大教育
学大教育
学大教育
学大教育